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Bandpass Functions
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A well known sampling theorem states that a bandlimited function can be completely
determined by its values at a uniformly placed set of points whose density is at least
twice the highest frequency component of the function (Nyquist rate). A less familiar
but important sampling theorem states that a bandlimited narrowband function can be
completely determined by its values at a properly chosen, nonuniformly placed set of
points whose density is at least twice the passband width. This allows for efficient digital
demodulation of narrowband signals, which are common in sonar, radar and radio inter-
ferometry, without the side effect of signal group delay from an analog demodulator.
This paper extends this theorem by developing a technique which allows a finite sum of
bandlimited narrowband functions to be determined by its values at a properly chosen,
nonuniformly placed set of points whose density can be made arbitrarily close to the sum
of the passband widths. Applications and a multidimensional extension of this technique
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will be discussed in a future paper.

I. Introduction and Statement of Result

A set § of real numbers is bounded if it is contained in a
finite interval. The content of a bounded set S is the unique
real number, denoted by cont(S), which satisfies the following
two conditions:

Condition 1: Whenever {[a;, b;]: i=1,..., M}is a finite
collection of closed intervals such that

M
SC U [q,b) (1)

i
=1

then

cont(S) <

;- 2) 2)

M
=1

i

Condition 2: cont(S) is the largest number which satisfies
condition 1.

In particular, if S is a finite union of finite intervals, then S
is bounded and cont(S) is the sum of the lengths of the

intervals.

A function f(¢) is called bandlimited if its Fourier trans- '
form F(x) defined by

F(x) = f“’ f()exp(=2mixt)ds 3)

satisfies the following property:

S = {x such that F(x) # 0} is bounded 4)




The frequency content of a bandlimited function f is the
content of the set Sin (4).

The object of this paper is to prove the following result:

Theorem 1: Given any bounded set S of real numbers
and any real number e > 0, there exists an integer P, real
numbers T; for 1 < i < P, a real number 7> 0, and functions
s(t) for 1 < i < P such that, for every function f(z) whose

Fourier transform vanishes outside of §, the following equa-
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tion is valid:

P +eo
r@y= 33 3, FWNT+T)s,(t-NT-T) (5)

=1 N=-oo
and furthermore
cont(S)+e>P/T ' (6)

Equation (5) expresses the fact that f(¢) can be determined
by its values on (or sampled on) a set of points {NT + T;},
called a sampling set, whose average density, which is P/T,
can be chosen to be arbitrarily close to the frequency content
of f(#). In the proof of theorem 1 the order P, step size T,
phases T;, and sampling functions s,(t) will be specified. The
following observations place theorem 1 in a historical
perspective.

The classical sampling in Refs. 1 and 2 corresponds to
theorem 1 where '

S=[-W,W,P=1,T, =0,T=1/2W
and

s() = Sin(2nWe)(2nWr) -

In this case, the sampling set has density = cont(S) = 2W and -

consists of uniformly placed points.

Kohlenberg’s sampling theorem in Ref. 3 for narrowband
functions corresponds to theorem 1 where

Wy >0,8= [-W,<W,-W,] U [W,, W, +W],P=2,

T, is subject to weak restrictions, 7= 1/W and s, (¢) and 5, (?)
are rather complicated. In this case, the sampling set has

density = cont(S) = 2W and consists of nonuniformly placed
points, Applications of this sampling technique (and of the
more restrictive phase quadrature technique) to radar, sonar
and radio interferometry are discussed in Refs. 4-6.

Any function f(¥) which represents a single channel elec-
tronic signal will be real valued; hence its Fourier transform
F(x) will satisfy the relation F(-x) = complex conjugate of
F(x) and the set S in (4) will be symmetric about the origin,

For this reason, the passband of a narrowband qgna] is nmml]y
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specified by the set
(W, Wy + Wi

rather than the set
S = [—Wo,—W0 -Wl U [Wo>'wo + Wj.

However, this paper treats complex valued functions because
the analysis involved is simpler and because complex random
processes are of interest in applied analysis (see Ref. 7). Also,
it should be noted that theorem 1 can easily be extended to
wide sense stationary random processes whose spectral den-
sities satisfy the hypothesis of theorem 1.

Many signals which occur in spread spectrum communica-
tion, navigation and remote sensing (radar, sonar, laser scan-
ning) can be modelled as finite sums of narrowband functions
whose passbands are widely separated with respect to their
widths. A special example, in which each of the passbands is
extremely narrow, arises for the Mobil Automated Field
Instrument System (MAFIS) navigation system being devel-
oped at the Jet Propulsion Laboratory (communicated by Dr.
William Hurd). In this system, four nearly pure frequency
tones are transmitted simultaneously and the received signal
is digitally sampled. The calculated phases associated with
each tone are converted to navigation ranging data. This phase
estimation problem is a special case of the problem discussed
in Ref. 8. However, for the more general case where the pass-
bands are wider, theorem 1 is appropriate.

Applications of theorem 1 and of a multivariable extension
of theorem 1 will be discussed in a sequel to this paper. The
latter applications include digital sampling strategies for
imaging radar and optical systems.

Il. Derivation of Main Result

The proof of theorem 1 requires the following formula
which was known to Gauss (Ref. 9).




If F(x) is the Fourier transform of f(¢) then for every value
of T, x,and y:

+ o0
TY2exp(mi x ) Z FNVT + y) exp(2mi NT x) =
. Nl
(7)
+ 00
T2 exp(~mi x p) E F(NT ! - x) exp(2mi NT™! »)
N=-o

(note that the left side of Eq. (7) is transformed to the right
side by the substitution 7> T-1,x > v, y > - x and f > F;
the beauty of this symmetry is reflected in Gauss’ title to
Ref. 9). This formula has (mistakenly) acquired the name of
the Poisson summation formula under which it is to be found
in most serious books on signal processing (Ref. 10) and
Fourier analysis (Refs. 11 and 12).

The proof of theorem 1 also requires the Fourier inversion
theorem (see Refs. 10-12), which states that a function f(¢)
can be determined by its Fourier transform F(x) as follows:

(0 =f F(x) exp(2mi x t)dx (8)

Now, let S be a bounded set of real numbers and let ¢ >0
as in the hypothesis of theorem 1. From the definition of the
content of § an integer M and closed intervals [a;, b;], 1 <
i <M can be chosen such that;

< ¥

scl= e, b)) ©)

TI.

and

M
cont(S) +—-§— > = Z (b, -a) (10)

i=1

Choose T > 2M/e; therefore,

MIT < €2 (11)

For any real number x define the set N(x) of integers by

N(@x) = {Nsuchthat NT- ' -x e/} (12)

and define
n(x) = number of elements in N(x) (13)

and define
P = max {n(x): xisreal} (14)

Now, choose real numbers T}, 1 < i< P to be arbitrary but
fixed. Sufficient restrictions on the set {7;:1 </ P} will be
formulated which imply the conclusion of theorem 1 (where
S, €, P, T; and T in theorem 1 coincide with the parameters
chosen above).

Since {NT-! -x € I;N an integer} consists of a set of
points pairwise spaced at a distance at least 7-1 and lying
within a union of M intervals whose lengths sum to L, a simple

" combinatoric argument implies the inequality

PIT<M/T+L (15)
which, together with inequality (11)implies
PIT< e/2+1L (16)
Finally, combining inequalities (10) and (16) yields
cont(S)+e>P/T an

which establishes inequality (6).

In order to determine f(¢) from sample values as in Eq. (5),
Eq. (8) suggests that first the function F(x) should be deter-
mined from sample values of f(z). The relationship between
F(x) and sample values of f(¢) is exactly described by Eq. (7).
Define, for every real number x, the P by n(x) size matrix
B(x) as follows:

BG) = [by )], 1<I<P 1</ <nE)

(18)
where (of course the non subscript 7 is 4/-1)
by (x) = exp QmiN(x) T -ir) (19)




and Nl-(x) is the jth element, in ascending order, of the set
N(x) in (12). Define, for every real number x, a P size column
vector V(x) by

Vi) = [vx)l, 1<i<P (20)
where
v@) =T ), fINT+T)exp [2nx(NT+T)] (21)
N=—o
and a n(x) size column vector W(x) by
Wx) = [w,x)}, 1<) <nlx) (22)
where (with N].(x) defined as in (19))
W) = FOT =) 23)

Then the set of equations obtained by substituting the
value y = T; for 1 < i< Pinto Eq. (7) can be written in matrix
form as:

V(x) = B(x) Wx) (24)
Clearly, in order to determine F(x) it suffices to determine
W(x) for values of x in the interval {0, 7-1]. As x ranges from
0 to 71 the set of values Ny(x) (1 <j < n(x)) form a finite set
of integers {K 1 < j< glwhere g > P. Now, the set of expo-
nential functlons exp (2mi K u): 1 <j< glare orthogonal and
hence linearly independent functlons of the variable u. There-
fore, there exists a set of real numbers {i; : 1 < i< g}such
that the g by g matrix Q = {exp(2ni K;u 2] has rank g. Then
choose T; = Tu; for 1 < i <P Smce any choice of n(x) <
P g columns of Q results in a P by n(x) matrix having rank
n(x) and B(x) arises by choosing the first #(x) columns of Q,
it follows that such a choice of T, 1 < i < P will imply that
for any value of x between 0 and 7-! the n(x) by n(x) matrix
B*(x) B(x) (where * denotes the transpose of a matrix) has
rank n(x) and is therefore invertible. Hence Eq. (24) can be
solved for W(x) to yield a (generalized inverse) solution.

W(x) = [B*(x) BG)l ™! B*(x) V(x) (25)

Furthermore, the complicated matrix valued function preced-
ing V(x) in (25) is, by (18), (19), and the definition of N;(x),
constant over each of a finite number of intervals. Therefore,
there exists an integer r, real numbers Xy <x2 <...<Xx,and
a set of coefficients {c,.j :1LiKP, 1 €j< r}such that

Z ¢y i(—x)forx <x<x , (forj<r)
Fx) = { Oforx>x, orx<x, (26)
unspecified otherwise
Finally, applying Eq. (8) yields
10 =qu F(x)exp Qmix t)dx 27

—

r— P
> 2y

i=

=T f(NT

“["J
'.'[VJ?

jt+1
+ Tl)f exp [2mix (¢t~ NT - Tl dx
X .
J

+ o0

Y. ANT+T)s (t- NT-T)

=1 N=-—oco

where

xp Qaix,, 1) ~exp (2ni x].t)

j+1 c
2mit if

(28)

are the sampling functions in Eq. (5). The proof of theorem 1
is concluded.
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